使用密度全球第一,多項政策支持第三代智能機器人的研發
20世紀90年代初,韓國政府為應對本國汽車、電子產業對工業機器人的爆發性需求,以“市場換技術”,通過現代集團引進日本發那科,全面學習后者技術,到本世紀大致建成了韓國工業機器人產業體系。2000年后,韓國的工業機器人產業進入第二輪高速增長期。2001年至2011年間,韓國機器人裝機總量年均增速高達11.7%。國際機器人聯合會的數據顯示,2012年,韓國的工業機器人使用密度為世界第一,每萬名工人擁有347臺機器人,遠高于58臺的全球平均水平。
目前,韓國的工業機器人生產商已占全球5%左右的市場份額。現代重工已可供應焊接、搬運、密封、碼垛、沖壓、打磨、上下料等領域的機器人,大量應用于汽車、電子、通信產業,大大提高了韓國工業機器人的自給率。但整體而言,韓國技術仍與日本、歐洲等領先國家存在較大差距。
韓國政府近年來陸續發布多項政策,旨在扶植第三代智能機器人的研發與應用。2003年,產業資源部公布了韓國“十大未來成長動力產業”,其中就包括智能工業機器人;2008年9月,《智能機器人開發與普及促進法》正式實施;2009年4月,政府發布《第一次智能機器人基本計劃》,計劃在2013年前向包括工業機器人在內的五個機器人研究方向投入1萬億韓元(約合61.16億元人民幣),力爭使韓國在2018年成為全球機器人主導國家;2012年10月,《機器人未來戰略戰網2022》公布,其政策焦點為支持韓國企業進軍國際市場,搶占智能機器人產業化的先機。
中國
面臨核心技術被發達國家控制等挑戰,產業市場空間巨大
首先,我國在機器人領域的部分技術已達到或接近國際先進水平。機器人涉及的技術較多,大體可分為器件技術、系統技術和智能技術。我國在通用零部件、信息網絡等部分器件和系統技術領域與發達國家的差距在10年左右,而對智能化程度要求不高的焊接、搬運、清潔、碼垛、包裝機器人的國產化率較高。近年來,我國在人工智能方面的研發也有所突破,中國科學院和多所著名高校都培育出專門從事人工智能研究的團隊,機器人學習、仿生識別、數據挖掘以及模式、語言和圖像識別技術比較成熟。
其次,我國企業具有很強的系統集成能力,這種能力在電子信息等高度模塊化產業和高鐵等復雜產品產業都得到體現。系統集成的意義在于根據具體用戶的需求,將模塊組成可應用的生產系統,這可能成為我國機器人產業打破國外壟斷的突破口。
第三,我國機器人產業的市場空間巨大。目前,我國機器人使用密度較低,制造業萬人機器人累計安裝量不及國際平均水平的一半,服務和家庭用機器人市場尚處于培育階段,機器人應用市場增長空間巨大;二代機器人仍然是主流,機器人向第三代智能機器人升級換代空間巨大;機器人主要應用于汽車產業,機器人向其他領域擴展空間巨大。
當然,我們也要清醒地看到我國工業機器人產業發展面臨的巨大挑戰。首先,機器人的頂層架構設計和基礎技術被發達國家控制,在機器人成本結構中比重較大的減速機、伺服電機、控制器、數控系統都嚴重依賴進口,國產機器人并不具備顯著成本優勢。其次,存在低端鎖定的風險。一方面,發達國家不會輕易向中國轉移或授權機器人核心技術、專利,我國機器人企業通過參與國際標準制定、技術合作研發進入中高端市場的阻礙很多;另一方面,地方政府對產業的盲目投資可能形成過剩產能,導致重復建設和低價競爭。再次,機器人研發、制造與應用之間缺乏有效銜接。機器人相關技術研發領先的高校和院所并不具備市場開拓能力,而企業在基礎研發上的投入還非常低,國內產學研結合又存在諸多體制機制障礙,導致研發與制造環節脫節。
圖片說明:
圖①:在莫斯科國立大學的支持下,俄羅斯加里寧格勒一所學校開放計算機科學和機器人技術中心供學生參觀學習。
圖②:2013年2月20日,日本新能源產業技術綜合開發機構在千葉工業大學發布最新研發的救災機器人及輔助救災裝備。
圖③:2013年8月6日,美國宇航局宇航員克里斯·卡西迪身穿遙控操作裝置在國際空間站測試航天機器人。
2024-11-03 08:35
2024-11-02 08:58
2024-10-30 10:21
2024-10-30 10:14
2024-10-29 09:48
2024-10-28 08:36
2024-10-28 08:21
2024-10-26 11:08
2024-10-26 10:09
2024-10-23 09:13